Extensions 1→N→G→Q→1 with N=C3 and Q=S3×C33

Direct product G=N×Q with N=C3 and Q=S3×C33
dρLabelID
S3×C34162S3xC3^4486,256

Semidirect products G=N:Q with N=C3 and Q=S3×C33
extensionφ:Q→Aut NdρLabelID
C3⋊(S3×C33) = C3⋊S3×C33φ: S3×C33/C34C2 ⊆ Aut C354C3:(S3xC3^3)486,257

Non-split extensions G=N.Q with N=C3 and Q=S3×C33
extensionφ:Q→Aut NdρLabelID
C3.1(S3×C33) = D9×C33φ: S3×C33/C34C2 ⊆ Aut C3162C3.1(S3xC3^3)486,220
C3.2(S3×C33) = C32×C32⋊C6φ: S3×C33/C34C2 ⊆ Aut C354C3.2(S3xC3^3)486,222
C3.3(S3×C33) = C32×C9⋊C6φ: S3×C33/C34C2 ⊆ Aut C354C3.3(S3xC3^3)486,224
C3.4(S3×C33) = S3×C32×C9central extension (φ=1)162C3.4(S3xC3^3)486,221
C3.5(S3×C33) = C3×S3×He3central stem extension (φ=1)54C3.5(S3xC3^3)486,223
C3.6(S3×C33) = C3×S3×3- 1+2central stem extension (φ=1)54C3.6(S3xC3^3)486,225
C3.7(S3×C33) = S3×C9○He3central stem extension (φ=1)546C3.7(S3xC3^3)486,226

׿
×
𝔽